Nidal and Cristian‘s paper has been published in European Cells & Materials (eCM).
In the paper we investigated how frequency and duration of loading affect cartilage and bone development. We used an in vitro explant culture system to culture embryonic chick limb explants under a range of loading regimes in which the amount of loading and the frequency were systematically varied. We found that increasing the duration (amount) of loading promoted cartilage growth, shape development and mineralisation of the femur and tibiotarsus. However, varying frequency only had significant effects on mineralisation, and not on cartilage growth or shape. Increased glycosaminoglycan deposition and cell proliferation may have contributed to the accelerated cartilage growth and shape change under increasing loading duration. The results demonstrated that frequencies and durations of applied biomechanical stimulation differentially promoted cartilage and bone formation, with implications for developmentally inspired tissue engineering strategies aiming to modulate tissue construct properties.
The work described in this paper was funded by an ERC Starting Grant. Congratulations Nidal and Cristian!